Injection Molding Design Checklist

✓ Use this checklist during product development, mold design, and trial runs to ensure high-quality, cost-effective injection molding results. Print and check each box as you review.

1. Part Design

Ensure uniform wall thickness (variation $\leq \pm 15\%$).
Add fillets and radii (≥0.5× wall thickness).
Avoid sharp corners; use gradual transitions.
Include draft angles (1–2° typical).
Design ribs and bosses correctly (0.5–0.7× nominal wall).

2. Gate and Runner Design

Position gates at thickest sections for proper packing.
Minimize weld lines by careful gate placement.
Use hot-runner systems for high-volume production.
Balance runner layout for even filling.
Check gate size for optimal flow.

3. Cooling System

Place cooling channels close to cavity surface.
Use conformal cooling for complex parts.
Maintain uniform mold temperature.
Target 60–70% of cycle time for cooling.
Run mold-flow simulation to find hot spots.

4. Material Selection

Choose resin for mechanical/chemical requirements.
Account for shrinkage and stability.

Verify additive compatibility.
Ensure UV/flame rating if required.
Follow supplier's recommended processing window.

5. Mold Construction

Select proper mold steel based on production volume.
Provide adequate venting to prevent burns.
Locate parting lines in non-critical areas.
Ensure proper ejector pin layout.
Specify surface finish per SPI standard.

6. Assembly Considerations

Use inserts with retention features (knurling/undercuts).
Design snap-fits to reduce assembly time.
Avoid excessive interference fits.
Plan for automation when volumes are high.

7. Quality & Tolerance

Define achievable tolerances for molding process.
Compensate for shrinkage in tool design.
Plan for first-article inspection (FAI).
Monitor process with SPC.
Run mold trials before mass production.

8. Cost & Efficiency

Choose cavity number based on volume.
Use family molds carefully (similar cycle times).
Evaluate cycle time and scrap rate.
Apply lean manufacturing principles.